6533b7d3fe1ef96bd1260b3c

RESEARCH PRODUCT

Neutrino phenomenology and stable dark matter with A4

Davide MeloniEduardo PeinadoStefano Morisi

subject

Nuclear and High Energy PhysicsParticle physicsLepton mixingDark matterDiscrete symmetriesFOS: Physical sciencesElementary particle01 natural sciences7. Clean energyNuclear physicsEffective mass (solid-state physics)High Energy Physics - Phenomenology (hep-ph)Double beta decay0103 physical sciencesDark matterNeutrinoless double beta decay010306 general physicsNeutrino oscillationPhysics010308 nuclear & particles physicsFlavor symmetriesNeutrino massesMassless particleHigh Energy Physics - PhenomenologyMass spectrumNeutrino

description

We present a model based on the A4 non-abelian discrete symmetry leading to a predictive five-parameter neutrino mass matrix and providing a stable dark matter candidate. We found an interesting correlation among the atmospheric and the reactor angles which predicts theta_23 ~ pi/4 for very small reactor angle and deviation from maximal atmospheric mixing for large theta_13. Only normal neutrino mass spectrum is possible and the effective mass entering the neutrinoless double beta decay rate is constrained to be |m_ee| > 4 10^{-4} eV.

10.1016/j.physletb.2011.02.019http://dx.doi.org/10.1016/j.physletb.2011.02.019