6533b7d3fe1ef96bd1260b43
RESEARCH PRODUCT
Cosmological parameters degeneracies and non-Gaussian halo bias
Carmelita CarboneLicia VerdeOlga Menasubject
AstrofísicaCúmuls de galàxiesParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmic microwave backgroundFOS: Physical sciencesGalaxy clustersAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesPower spectrumsymbols.namesake0103 physical sciencesPlanck010303 astronomy & astrophysicsRedshift surveysPhysicsSpectral indexCosmological parameters from LSSCosmologiaClusters of galaxies010308 nuclear & particles physicsEquation of state (cosmology)Order (ring theory)Spectral densityAstronomy and AstrophysicsCosmologyHubble volumeDark energysymbolsAstrophysics - Cosmology and Nongalactic Astrophysicsdescription
We study the impact of the cosmological parameters uncertainties on the measurements of primordial non-Gaussianity through the large-scale non-Gaussian halo bias effect. While this is not expected to be an issue for the standard Lambda CDM model, it may not be the case for more general models that modify the large-scale shape of the power spectrum. We consider the so-called local non-Gaussianity model, parametrized by the f(NL) non-Gaussianity parameter which is zero for a Gaussian case, and make forecasts on f(NL) from planned surveys, alone and combined with a Planck CMB prior. In particular, we consider EUCLID- and LSST-like surveys and forecast the correlations among f(NL) and the running of the spectral index alpha(s), the dark energy equation of state w, the effective sound speed of dark energy perturbations c(s)(2), the total mass of massive neutrinos M-nu = Sigma m(nu), and the number of extra relativistic degrees of freedom N-nu(rel). Neglecting CMB information on f(NL) and scales k > 0.03h/Mpc, we find that, if N-nu(rel) is assumed to be known, the uncertainty on cosmological parameters increases the error on f(NL) by 10 to 30% depending on the survey. Thus the f(NL) constraint is remarkable robust to cosmological model uncertainties. On the other hand, if N-nu(rel) is simultaneously constrained from the data, the f(NL) error increases by similar to 80%. Finally, future surveys which provide a large sample of galaxies or galaxy clusters over a volume comparable to the Hubble volume can measure primordial non-Gaussianity of the local form with a marginalized 1-sigma error of the order Delta f(NL) similar to 2 - 5, after combination with CMB priors for the remaining cosmological parameters. These results are competitive with CMB bispectrum constraints achievable with an ideal CMB experiment.
year | journal | country | edition | language |
---|---|---|---|---|
2010-03-01 | Journal of Cosmology and Astroparticle Physics |