6533b7d3fe1ef96bd1260bec

RESEARCH PRODUCT

Core-crosslinked polymeric micelles: Principles, preparation, biomedical applications and clinical translation

Marina TalelliMatthias BarzCristianne J F RijckenFabian KiesslingWim E. HenninkTwan LammersSub Drug DeliveryDep Farmaceutische WetenschappenUips - Utrecht Institute For Pharmaceutical SciencesPharmaceutics

subject

DrugDrug targetingMaterials sciencemedia_common.quotation_subjectBiomedical EngineeringMedicine (miscellaneous)Pharmaceutical ScienceNanotechnologyBioengineeringMicelleArticleMaterials Science(all)In vivoGeneral Materials SciencePharmaceutical sciencesPolymermedia_commonMETIS-315279Translation (biology)3. Good healthNanomedicineTargeted drug deliveryIR-99653Drug deliveryNanomedicineCore-crosslinkingEPRMicelleBiotechnology

description

Polymeric micelles (PM) are extensively used to improve the delivery of hydrophobic drugs. Many different PM have been designed and evaluated over the years, and some of them have steadily progressed through clinical trials. Increasing evidence suggests, however, that for prolonged circulation times and for efficient EPR-mediated drug targeting to tumors and to sites of inflammation, PM need to be stabilized, to prevent premature disintegration. Core-crosslinking is among the most popular methods to improve the in vivo stability of PM, and a number of core-crosslinked polymeric micelles (CCPM) have demonstrated promising efficacy in animal models. The latter is particularly true for CCPM in which (pro-) drugs are covalently entrapped. This ensures proper drug retention in the micelles during systemic circulation, efficient drug delivery to pathological sites via EPR, and tailorable drug release kinetics at the target site. We here summarize recent advances in the CCPM field, addressing the chemistry involved in preparing them, their in vitro and in vivo performance, potential biomedical applications, and guidelines for efficient clinical translation.

10.1016/j.nantod.2015.01.005https://doi.org/10.1016/j.nantod.2015.01.005