6533b7d3fe1ef96bd126139d

RESEARCH PRODUCT

3D MHD MODELING of TWISTED CORONAL LOOPS

Massimiliano GuarrasiSalvatore OrlandoAndrea MignoneEric PriestGiovanni PeresGiovanni PeresA. W. HoodFabio RealeFabio Reale

subject

Sun: activity; Sun: corona; Astronomy and Astrophysics; Space and Planetary Science010504 meteorology & atmospheric sciencescorona [Sun]Astrophysics::High Energy Astrophysical PhenomenaNDASFOS: Physical sciences01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaSun: activity0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsQB Astronomyactivity [Sun]010303 astronomy & astrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)QC0105 earth and related environmental sciencesQBPhysicsFlux tubeSun: coronaAstronomy and AstrophysicsCoronal loopCoronaMagnetic fluxComputational physicsMagnetic fieldQC PhysicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsMagnetohydrodynamicsMagnetic diffusivity

description

We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing currents through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube, in the solar atmosphere extending from the high-beta chromosphere to the low-beta corona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ~30 km. We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the flux tube is heated to active region temperatures (~3 MK) after ~2/3 hr. Upflows from the chromosphere up to ~100 km/s fill the core of the flux tube to densities above 10^9 cm^-3. More heating is released in the low corona than the high corona and is finely structured both in space and time.

10.3847/0004-637x/830/1/21http://hdl.handle.net/2318/1693369