6533b7d4fe1ef96bd1261e24
RESEARCH PRODUCT
Polyamines and related enzymes in rice seeds differing in germination potential
Laurent BonneauJosette Martin-tanguyMonique Carrésubject
0106 biological sciences[SDE] Environmental SciencesPhysiology[SDV]Life Sciences [q-bio]SperminePlant Science01 natural sciencesOrnithine decarboxylase03 medical and health scienceschemistry.chemical_compoundComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesbiologyfood and beveragesSpermidine[SDV] Life Sciences [q-bio]chemistryBiochemistryGermination[SDE]Environmental SciencesPutrescinebiology.proteinSpermidine synthasePolyamineArginine decarboxylaseAgronomy and Crop ScienceRIZ010606 plant biology & botanydescription
In ungerminated rice seeds, (Japonica rice variety, CV Tapei 309), the content of free amines (putrescine, spermidine, spermine, tyramine) was higher in seed lots having a low germination frequency compared to those with high germination potential. Conversely, amine conjugates (di-feruloylputrescine, di-feruloylspermidine, diferuloyldiaminopropane and feruloyltyramine) decreased with loss of viability. Thus, these compounds appeared to constitute biochemical markers of seed viability. In seeds with high germination potential, conjugates decreased drastically during germination, with an early and rapid increase in free amines (putrescine, spermidine, tyramine). Arginine decarboxylase (ADC) activity was highest during the germination of high germination potential seeds, its activity gradually declining with loss of viability and being closely correlated with agmatine content. The polyamine biosynthetic inhibitors (α-DL-difluoromethylarginine, DFMA, a specific and irreversible inhibitor of ADC; α-DL-difluoromethylornithine, DFMO, a specific irreversible inhibitor of ornithine decarboxylase (ODC); cyclohexylammonium sulfate, CHA, inhibitor of spermidine synthase) neither depleted putrescine and spermidine levels nor inhibited germination in high germination potential seeds. In low germination potential seeds, the germination process was inhibited by DFMA or CHA. Application of agmatine resulted in a reversal of inhibition. DFMA inhibited ADC activity in both categories of seeds. In low germination potential seeds treated with CHA no ADC activity was found. These results suggest that amines are involved in the germination process of rice seeds. It appears that amine conjugates may serve as a storage form of amines which, upon enzymatic hydrolysis, could supply the cell with an additional amine reserve and influence cell division and/or cell elongation.
year | journal | country | edition | language |
---|---|---|---|---|
1994-07-01 |