6533b7d4fe1ef96bd1262894

RESEARCH PRODUCT

Plasma sloshing in pulse-heated solar and stellar coronal loops

Fabio Reale

subject

010504 meteorology & atmospheric sciencesFOS: Physical sciencesAstrophysics01 natural scienceslaw.inventionSettore FIS/05 - Astronomia E Astrofisicalaw0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesstars: coronaePhysicsSolar flareAstronomy and AstrophysicsPlasmaCoronal loopLight curvePulse (physics)AmplitudeAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space Physicsstars: flareMagnetohydrodynamicsFlare

description

There is evidence that coronal heating is highly intermittent, and flares are the high energy extreme. The properties of the heat pulses are difficult to constrain. Here hydrodynamic loop modeling shows that several large amplitude oscillations (~ 20% in density) are triggered in flare light curves if the duration of the heat pulse is shorter that the sound crossing time of the flaring loop. The reason is that the plasma has not enough time to reach pressure equilibrium during the heating and traveling pressure fronts develop. The period is a few minutes for typical solar coronal loops, dictated by the sound crossing time in the decay phase. The long period and large amplitude make these oscillations different from typical MHD waves. This diagnostic can be applied both to observations of solar and stellar flares and to future observations of non-flaring loops at high resolution.

https://dx.doi.org/10.48550/arxiv.1607.01329