6533b7d4fe1ef96bd12628e4

RESEARCH PRODUCT

Exploitation of SAR and Optical Sentinel Data to Detect Rice Crop and Estimate Seasonal Dynamics of Leaf Area Index

Campos-tabernerM.(1)García-haroJ.(1)Camps-vallsG.(2)Grau-muedraG.(1)NutiniF.(3)BusettoL.(3)KatsantonisD.(4)StavrakoudisD.(5)MinakouC.(5)GattiL.(6)BarbieriM.(6)HoleczF.(6)StroppianaD.(3)BoschettiM.(3)

subject

010504 meteorology & atmospheric sciencesMean squared errorScienceleaf area index (LAI)0211 other engineering and technologies02 engineering and technology01 natural sciencesCropAtmospheric radiative transfer codesConsistency (statistics)KrigingSpatial consistencyArròs Malalties i plaguesSentinel-1ALeaf area indexmappingSentinel021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing2. Zero hungerLeaf Area IndexSentinel-2AQCiències de la terrarice mapGeneral Earth and Planetary SciencesEnvironmental sciencerice map; leaf area index (LAI); Sentinel-1A; Sentinel-2A; Gaussian process regressionRice cropGaussian process regression

description

This paper presents and evaluates multitemporal LAI estimates derived from Sentinel-2A data on rice cultivated area identified using time series of Sentinel-1A images over the main European rice districts for the 2016 crop season. This study combines the information conveyed by Sentinel-1A and Sentinel-2A into a high-resolution LAI retrieval chain. Rice crop was detected using an operational multi-temporal rule-based algorithm, and LAI estimates were obtained by inverting the PROSAIL radiative transfer model with Gaussian process regression. Direct validation was performed with in situ LAI measurements acquired in coordinated field campaigns in three countries (Italy, Spain and Greece). Results showed high consistency between estimates and ground measurements, revealing high correlations (R2 > 0.93) and good accuracies (RMSE < 0.83, rRMSEm < 23.6% and rRMSEr < 16.6%) in all cases. Sentinel-2A estimates were compared with Landsat-8 showing high spatial consistency between estimates over the three areas. The possibility to exploit seasonally-updated crop mask exploiting Sentinel-1A data and the temporal consistency between Sentinel-2A and Landsat-7/8 LAI time series demonstrates the feasibility of deriving operationally high spatial-temporal decametric multi-sensor LAI time series useful for crop monitoring.

http://dx.doi.org/10.3390/rs9030248