6533b7d4fe1ef96bd126291d

RESEARCH PRODUCT

Event-triggered robust adaptive control for discrete time uncertain systems with unmodelled dynamics and disturbances

Changyun WenWenxiu ZhuangJing ZhouHongye SuZhitao Liu

subject

0209 industrial biotechnologyControl and OptimizationAdaptive controlObservational errorComputer scienceUncertain systems02 engineering and technologyComputer Science ApplicationsHuman-Computer InteractionVDP::Teknologi: 500020901 industrial engineering & automationDiscrete time and continuous timeControl and Systems EngineeringControl theoryRobustness (computer science)Bounded functionElectrical and Electronic EngineeringRobust controlEvent triggered

description

In practice, modelling errors caused by high-order unmodelled dynamics and external disturbances are unavoidable. How to ensure the robustness of an adaptive controller with respect to such modelling errors is always a critical concern. In this study, the authors consider the design of event-triggered robust adaptive control for a class of discrete-time uncertain systems which involve such modelling errors and also are allowed to be non-minimum phase. Unlike some existing event-triggered control schemes, the developed controllers do not require that the measurement errors meet the corresponding input-to-state stable condition. Global stability of the closed-loop system which means that all the signals are bounded is established in the presence of unmodelled dynamics and disturbances. Besides, in contrast to existing robust adaptive schemes, the designed adaptive controller does not involve parameters related to unmodelled dynamics and disturbances which are difficult to be chosen for ensuring such stability. An example is given to verify the effectiveness of the proposed control strategy.

10.1049/iet-cta.2019.0308https://hdl.handle.net/11250/2647959