6533b7d4fe1ef96bd1262a87

RESEARCH PRODUCT

Geometric Entropies of Mixing (EOM)

B. H. Lavenda

subject

Statistics and ProbabilityStatistical Mechanics (cond-mat.stat-mech)Principle of maximum entropyConfiguration entropyMathematical analysisMaximum entropy thermodynamicsMin entropyFOS: Physical sciencesStatistical and Nonlinear PhysicsComputer Science::Computational GeometryQuantum relative entropyMaximum entropy probability distributionMathematics::Metric GeometryMathematical PhysicsEntropy rateJoint quantum entropyCondensed Matter - Statistical MechanicsMathematics

description

Trigonometric and trigonometric-algebraic entropies are introduced. Regularity increases the entropy and the maximal entropy is shown to result when a regular $n$-gon is inscribed in a circle. A regular $n$-gon circumscribing a circle gives the largest entropy reduction, or the smallest change in entropy from the state of maximum entropy which occurs in the asymptotic infinite $n$ limit. EOM are shown to correspond to minimum perimeter and maximum area in the theory of convex bodies, and can be used in the prediction of new inequalities for convex sets. These expressions are shown to be related to the phase functions obtained from the WKB approximation for Bessel and Hermite functions.

http://arxiv.org/abs/cond-mat/0511247