6533b7d4fe1ef96bd1262a9d

RESEARCH PRODUCT

Mathematical modelling of greenhouse gas emissions from membrane bioreactors: A comprehensive comparison of two mathematical models.

Giorgio ManninaGiorgio ManninaGeorge A. EkamaAlida Cosenza

subject

DenitrificationEnvironmental EngineeringModel prediction0208 environmental biotechnologyBioreactorNitrous OxideSoil scienceBioengineering02 engineering and technology010501 environmental sciencesMembrane bioreactor01 natural sciencesN2O modellingGreenhouse GasesSouth AfricaBioreactorsNutrient removalBioreactorSensitivity (control systems)Waste Management and Disposal0105 earth and related environmental sciencesMathematicsWWTPMathematical modelSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentGeneral MedicineModels Theoretical020801 environmental engineeringGreenhouse gasGreenhouse Gase

description

Abstract This paper compares two mathematical models (Model I and Model II) to predict greenhouse gases emission from a University Cape Town (UCT) – membrane bioreactor (MBR) plant. Model I considers N 2 O production only during denitrification. Model II takes into account the ammonia-oxidizing bacteria (AOB) formation pathways for N 2 O. Both models were calibrated adopting real data. Model comparison was performed in terms of (i) sensitivity analysis (ii) best fit and (iii) model prediction uncertainty. On average 6% of factors of Model I and 9% of Model II resulted to be important. In terms of best fit, Model II had a better capability of reproducing the measured data. The average efficiency related to the N 2 O model outputs was equal to 0.33 and 0.38 for Model I and Model II, respectively. On average, 73% (Model I) and 86% (Model II) of measured data lay inside the uncertainty bands.

10.1016/j.biortech.2018.07.106https://pubmed.ncbi.nlm.nih.gov/30077166