6533b7d5fe1ef96bd1263de1

RESEARCH PRODUCT

The enhancement of ferromagnetism in uniaxially stressed diluted magnetic semiconductors

Vladimir A. StephanovichYuri Semenov

subject

Condensed Matter - Materials SciencePhase transition temperatureMaterials scienceCondensed matter physicsHeisenberg modelMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesDisordered Systems and Neural Networks (cond-mat.dis-nn)Magnetic semiconductorCondensed Matter - Disordered Systems and Neural NetworksCondensed Matter::Materials ScienceFerromagnetismLattice (order)Ising modelCondensed Matter::Strongly Correlated ElectronsComputer Science::DatabasesPhase diagram

description

We predict a new mechanism of enhancement of ferromagnetic phase transition temperature $T_c$ in uniaxially stressed diluted magnetic semiconductors (DMS) of p-type. Our prediction is based on comparative studies of both Heisenberg (inherent to undistorted DMS with cubic lattice) and Ising (which can be applied to strongly enough stressed DMS) models in a random field approximation permitting to take into account the spatial inhomogeneity of spin-spin interaction. Our calculations of phase diagrams show that area of parameters for existence of DMS-ferromagnetism in Ising model is much larger than that in Heisenberg model.

10.1103/physrevb.67.195203http://arxiv.org/abs/cond-mat/0304012