6533b7d5fe1ef96bd1263f3a

RESEARCH PRODUCT

Statistical Signatures of Nanoflare Activity. I. Monte Carlo Simulations and Parameter-space Exploration

C. J. DillonDamian J. ChristianFabio RealeFabio RealeS. J. HoustonMihalis MathioudakisDavid B. JessDavid B. JessMichael S. KirkP. H. KeysS. Krishna PrasadS. D. T. Grant

subject

Physics010504 meteorology & atmospheric sciencesMonte Carlo methodFOS: Physical sciencesAstronomy and AstrophysicsMagnetic reconnectionAstrophysicsParameter space01 natural sciencesCoronaMagnetic fieldNanoflaresmethods: numerical – methods: statistical - Sun: activity – Sun: chromosphere – Sun: corona – Sun: flaresAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary Science0103 physical sciencesPhysics::Space PhysicsAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsChromosphereIntensity (heat transfer)Solar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciences

description

Small-scale magnetic reconnection processes, in the form of nanoflares, have become increasingly hypothesized as important mechanisms for the heating of the solar atmosphere, for driving propagating disturbances along magnetic field lines in the Sun's corona, and for instigating rapid jet-like bursts in the chromosphere. Unfortunately, the relatively weak signatures associated with nanoflares places them below the sensitivities of current observational instrumentation. Here, we employ Monte Carlo techniques to synthesize realistic nanoflare intensity time series from a dense grid of power-law indices and decay timescales. Employing statistical techniques, which examine the modeled intensity fluctuations with more than 10^7 discrete measurements, we show how it is possible to extract and quantify nanoflare characteristics throughout the solar atmosphere, even in the presence of significant photon noise. A comparison between the statistical parameters (derived through examination of the associated intensity fluctuation histograms) extracted from the Monte Carlo simulations and SDO/AIA 171{\AA} and 94{\AA} observations of active region NOAA 11366 reveals evidence for a flaring power-law index within the range of 1.82 - 1.90, combined with e-folding timescales of 385 +/- 26 s and 262 +/- 17 s for the SDO/AIA 171{\AA} and 94{\AA} channels, respectively. These results suggest that nanoflare activity is not the dominant heating source for the active region under investigation. This opens the door for future dedicated observational campaigns to not only unequivocally search for the presence of small-scale reconnection in solar and stellar environments, but also quantify key characteristics related to such nanoflare activity.

10.3847/1538-4357/aaf8aehttp://hdl.handle.net/10447/339482