6533b7d5fe1ef96bd126466f

RESEARCH PRODUCT

Current Algebras as Hilbert Space Operator Cocycles

Jouko Mickelsson

subject

Algebrasymbols.namesakeWeak operator topologyMathematics::Operator AlgebrasSesquilinear formCurrent algebraHilbert spacesymbolsUnitary operatorNest algebraCompact operatorRepresentation theoryMathematics

description

Aspects of a generalized representation theory of current algebras in 3 + 1 dimensions axe discussed. Rules for a systematic computation of vacuum expectation values of products of currents are described. Their relation to gauge group actions in bundles of fermionic Fock spaces and to the sesquilinear form approach of Langmann and Ruijsenaars is explained. The regularization for a construction of an operator cocycle representation of the current algebra is explained. An alternative formula for the Schwinger terms defining gauge group extensions is written in terms of Wodzicki residue and Dixmier trace.

https://doi.org/10.1007/978-94-011-1078-5_25