6533b7d5fe1ef96bd1264878

RESEARCH PRODUCT

The exact solution of the Riemann problem with non-zero tangential velocities in relativistic hydrodynamics

José A. PonsJose Ma. MartiEwald Müller

subject

PhysicsShock waveDifferential equationMechanical EngineeringMathematical analysisAstrophysics (astro-ph)Zero (complex analysis)Fluid Dynamics (physics.flu-dyn)FOS: Physical sciencesPhysics - Fluid DynamicsCondensed Matter PhysicsAstrophysicssymbols.namesakeExact solutions in general relativityRiemann problemFlow velocityMechanics of MaterialsOrdinary differential equationsymbolsJump

description

We have generalised the exact solution of the Riemann problem in special relativistic hydrodynamics for arbitrary tangential flow velocities. The solution is obtained by solving the jump conditions across shocks plus an ordinary differential equation arising from the self-similarity condition along rarefaction waves, in a similar way as in purely normal flow. The dependence of the solution on the tangential velocities is analysed, and the impact of this result on the development of multidimensional relativistic hydrodynamic codes (of Godunov type) is discussed.

https://dx.doi.org/10.48550/arxiv.astro-ph/0005038