6533b7d5fe1ef96bd1264d3a

RESEARCH PRODUCT

Study of the antitumor effect of inducible nitric oxide synthase in a breast cancer model : analysis of molecular mechanisms

Myriam Lamrani

subject

Anti-tumor effectLipid A[SDV.CAN] Life Sciences [q-bio]/CancerMonoxyde d’azoteUbc13NOS II[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyNitric oxideTLR4[SDV.BC] Life Sciences [q-bio]/Cellular BiologyS-nitrosylationEffet anti-tumoralLipide A

description

The anti -tumor effect of a lipid A, OM -174 (lipid portion of LPS) was studied in a model of breast cancer in mice. In vivo, OM- 174 increases the survival of mice whereas in vitro it is not toxic to cancer cells. OM -174 binds to TLR4 immune cells inducing the production of cytokines such as IFNγ. In vitro, the combination of IFNγ to lipid A is cytotoxic. The objective of this thesis is to analyze those molecular mechanisms. We have shown both in vitro and in vivo that the cytotoxicity of the lipid A / IFNγ is dependent of TLR4 and of the receptor for IFNγ, and the NOS II expression. We also showed that the radical species, NO and superoxide anion forming peroxynitrite play a crucial role in this cytotoxicity. The origin of these radical species is being NOS II enzyme in a process of decoupling. We also looked for other associated mechanisms that may explain the cytotoxicity of lipid A / IFNγ. We then showed that NO is able to react with the cysteine residues of certain proteins, a process called S- nitrosylation. A proteomic analysis allowed us to identify at least a dozen proteins that are S- nitrosylated in breast cancer cells in response to lipid A / IFNγ. We studied the impact of this change on the basis of one of these proteins, the E2 conjugating enzyme UBC13 ubiquitin, a protein involved in cell proliferation and survival. We confirmed the UBC13 nitrosylation on cysteine 87 and identified as a target of NO. The expression of a mutant of UBC13 (replacement of cysteine 87 with alanine) forms inhibits the auto-ubiquitination of the enzyme and its ability to ubiquitinylated one of its targets IkBα. We have shown that S- nitrosylation of UBC13 induced its translocation to the nucleus and greater sensitivity to the cytotoxic effect of lipid A / IFNγ in cells. In summary, our results reveal an important and unexpected role of NOS II and NO in the antitumor effect of lipid A OM- 174 in a model of breast cancer in mice opening the way for the development of new cancer treatments.

https://theses.hal.science/tel-01289827