6533b7d5fe1ef96bd1264f44

RESEARCH PRODUCT

The computational power of continuous time neural networks

Pekka Orponen

subject

TheoryofComputation_COMPUTATIONBYABSTRACTDEVICESQuantitative Biology::Neurons and CognitionComputational complexity theoryArtificial neural networkComputer sciencebusiness.industryComputer Science::Neural and Evolutionary ComputationNSPACEComputational resourcePower (physics)Turing machinesymbols.namesakeCellular neural networksymbolsArtificial intelligenceTypes of artificial neural networksbusiness

description

We investigate the computational power of continuous-time neural networks with Hopfield-type units. We prove that polynomial-size networks with saturated-linear response functions are at least as powerful as polynomially space-bounded Turing machines.

https://doi.org/10.1007/3-540-63774-5_99