6533b7d5fe1ef96bd1265132

RESEARCH PRODUCT

Steady-state neutrophil homeostasis is dependent on TLR4/TRIF signaling

Rupert HandgretingerHansjörg SchildMarkus P. RadsakJulia-stefanie FrickMelanie MärklinMartin MüllerTina WiesnerStefan WirthsStefanie BuglHans-georg RammenseeHans-georg KoppLothar KanzMaya C. AndréPamela SteinElke Malenke

subject

NeutrophilsImmunologyRecombinant Granulocyte Colony-Stimulating FactorBiologyBiochemistryGranulopoiesisMiceGranulocyte Colony-Stimulating FactorAnimalsHomeostasisGranulocyte Precursor CellsLymphocytesNeutrophil homeostasisReceptorMice KnockoutCell BiologyHematologyGranulocyte colony-stimulating factorToll-Like Receptor 4Adaptor Proteins Vesicular TransportTRIFMyeloid Differentiation Factor 88ImmunologyTLR4HomeostasisSignal Transduction

description

Polymorphonuclear neutrophil granulocytes (neutrophils) are tightly controlled by an incompletely understood homeostatic feedback loop adjusting the marrow's supply to peripheral needs. Although it has long been known that marrow cellularity is inversely correlated with G-CSF levels, the mechanism linking peripheral clearance to production remains unknown. Herein, the feedback response to antibody induced neutropenia is characterized to consist of G-CSF–dependent shifts of marrow hematopoietic progenitor populations including expansion of the lin-/Sca-1/c-kit (LSK) and granulocyte macrophage progenitor (GMP) compartments at the expense of thrombopoietic and red cell precursors. Evidence is provided that positive feedback regulation is independent from commensal germs as well as T, B, and NK cells. However, in vivo feedback is impaired in TLR4-/- and TRIF-/-, but not MyD88-/- animals. In conclusion, steady-state neutrophil homeostasis is G-CSF–dependent and regulated through pattern-recognition receptors,thereby directly linking TLR-triggering to granulopoiesis.Steady-state and emergency granulopoiesis are both dependent on TLR signaling.

https://doi.org/10.1182/blood-2012-05-429589