6533b7d6fe1ef96bd12658ca

RESEARCH PRODUCT

ÉQUATIONS DIFFÉRENTIELLES À COEFFICIENTS DANS DES CORPS DE SÉRIES GÉNÉRALISÉES.

Mickael Matusinski

subject

[ MATH ] Mathematics [math]corps valué[MATH] Mathematics [math]well-ordered sets.Generalized (power) seriesensembles bien ordonnésfonction sous-analytiqueensembles bien ordonnés.valued fields[MATH]Mathematics [math]Séries généraliséesdéveloppement asymp-<br />totiquevaluationsub-analytic functionsasymptotic<br />development

description

We express the connection between the support of some equations and those of generalized series solutions. On the one hand we prove that any real power series solution of a sub-analytic differential equation belong to a lattice (i.e. an additive sub semi-group of positive reals). On the other hand we consider the field Mr of series with well-ordered support included in the Hahn product Hr with finite rank r (i.e. the lexicographic product of r copies of the reals). We equip Mr with a "Hardy type" derivation and define some well-ordered sets T1, ..., Tr such that : for all equation F(y,...,y(n))=0 with F in Mr[[Y0,...,Yn]] and whose support Supp F is a well-ordered subset of Hr, and for all solution y0 in Mr with v(y0(i))> (0,...,0) for i=0,...,n, then the exponents of y0 belong to a positive well-ordered subset of Hr obtained from Supp F, T1, ..., Tr by a finite number of elementary transformations.

https://tel.archives-ouvertes.fr/tel-00366152