6533b7d6fe1ef96bd1265b9b

RESEARCH PRODUCT

Constraints on dark matter annihilation from CMB observations before Planck

Aaron C. VincentOlga MenaSergio Palomares-ruizSergio Palomares-ruizLaura Lopez-honorez

subject

AstrofísicaCosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmic microwave backgroundDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energyPartícules (Física nuclear)symbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPlanck010303 astronomy & astrophysicsReionizationPhysicsdark matter theoryCosmologiaAnnihilation010308 nuclear & particles physicsAstronomy and AstrophysicsCMBR theoryRedshiftStarsHigh Energy Physics - PhenomenologysymbolsHalophysicsAstrophysics - Cosmology and Nongalactic Astrophysics

description

We compute the bounds on the dark matter (DM) annihilation cross section using the most recent Cosmic Microwave Background measurements from WMAP9, SPT'11 and ACT'10. We consider DM with mass in the MeV-TeV range annihilating 100% into either an e(+)e(-) or a mu(+)mu(-) pair. We consider a realistic energy deposition model, which includes the dependence on the redshift, DM mass and annihilation channel. We exclude the canonical thermal relic abundance cross section ( = 3 x 10(-26) cm(3)s(-1)) for DM masses below 30 GeV and 15 GeV for the e(+)e(-) and mu(+)mu(-) channels, respectively. A priori, DM annihilating in halos could also modify the reionization history of the Universe at late times. We implement a realistic halo model taken from results of state-of-the-art N-body simulations and consider a mixed reionization mechanism, consisting on reionization from DM as well as from first stars. We find that the constraints on DM annihilation remain unchanged, even when large uncertainties on the halo model parameters are considered.

10.1088/1475-7516/2013/07/046http://arxiv.org/abs/1303.5094