6533b7d6fe1ef96bd1265bcb

RESEARCH PRODUCT

Locating ergostar models in parameter space

Stuart L. ShapiroMilton RuizAntonios Tsokaros

subject

AstrofísicaPhysicsSurface (mathematics)High Energy Astrophysical Phenomena (astro-ph.HE)Equation of state010308 nuclear & particles physicsFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Parameter space01 natural sciencesGeneral Relativity and Quantum CosmologyStarsNeutron starQuark starPosition (vector)0103 physical sciencesDifferential rotationStatistical physics010306 general physicsAstrophysics - High Energy Astrophysical Phenomena

description

Recently, we have shown that dynamically stable ergostar solutions (equilibrium neutron stars that contain an ergoregion) with a compressible and causal equation of state exist [A. Tsokaros, M. Ruiz, L. Sun, S. L. Shapiro, and K. Ury\=u, Phys. Rev. Lett. 123, 231103 (2019)]. These stars are hypermassive, differentially rotating, and highly compact. In this work, we make a systematic study of equilibrium models in order to locate the position of ergostars in parameter space. We adopt four equations of state that differ in the matching density of a maximally stiff core. By constructing a large number of models both with uniform and differential rotation of different degrees, we identify the parameters for which ergostars appear. We find that the most favorable conditions for the appearance of dynamically stable ergostars are a significant finite density close to the surface of the star (i.e., similar to self-bound quark stars) and a small degree of differential rotation.

https://dx.doi.org/10.48550/arxiv.2002.01473