6533b7d6fe1ef96bd12665b7
RESEARCH PRODUCT
Atlas for the properties of elemental two-dimensional metals
Janne NevalaitaPekka Koskinensubject
Materials scienceta114Condensed matter physicsAtlas (topology)Metallic nanostructuresHeterojunction02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesBond lengthtwo-dimensional metals0103 physical sciencesDensity functional theorytwo-dimensional materials010306 general physics0210 nano-technologyElastic modulusdescription
Common two-dimensional (2D) materials have a layered three-dimensional (3D) structure with covalently bonded, atomically thin layers held together by weak van der Waals forces. However, in a recent transmission electron microscopy experiment, atomically thin 2D patches of iron were discovered inside a graphene nanopore. Motivated by this discovery, we perform a systematic density-functional study on atomically thin elemental 2D metal films, using 45 metals in three lattice structures. Cohesive energies, equilibrium distances, and bulk moduli in 2D are found to be linearly correlated to the corresponding 3D bulk properties, enabling the quick estimation of these values for a given 2D metal and lattice structure. In-plane elastic constants show that most 2D metals are stable in hexagonal and honeycomb, but unstable in square 2D structures. Many 2D metals are surprisingly stable against bending. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2018-01-10 | Physical Review B |