6533b7d6fe1ef96bd1266d42
RESEARCH PRODUCT
Accretion in young stars: measure of the stream velocity of TW Hya from the X-ray Doppler shift
Costanza ArgiroffiRosaria BonitoSalvatore OrlandoMarco MiceliGiovanni Peressubject
Settore FIS/05 - Astronomia E AstrofisicaAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAccretion accretion disks Stars: pre-main sequence Stars: variables: T Tauri Herbig Ae/Be Techniques: spectroscopic X-rays: starsAstrophysics::Galaxy Astrophysicsdescription
High-resolution X-ray spectra are a unique tool to investigate the accretion process in young stars. In fact X-rays allow to investigate the accretion-shock region, where the infalling material is heated by strong shocks due to the impact with the denser stellar atmosphere. Here we show for the first time that it is possible to constrain the velocity of the accretion stream by measuring the Doppler shift of the emitted X-rays. To this aim we analyzed the deep Chandra/HETGS observation of the accreting young star TW Hya. We selected a sample of emission lines free from significant blends, fitted them with gaussian profiles, computed the radial velocity corresponding to each line, and averaged these velocities to obtain an accurate estimate of the global velocity of the X-ray emitting plasma. After correcting for Earth's motion, we compared this observed velocity with the photospheric radial velocity. In order to check this procedure we applied the same technique to other Chandra/HETGS spectra of single stars, whose X-rays are due only to coronal plasma. While spectra of pure coronal sources provide Doppler shifts in agreement with the known stellar radial velocity, we found that the X-ray spectrum of TW Hya is red-shifted by ~30-40 km/s with respect to the stellar photosphere. This proves that the X-ray emitting plasma on TW Hya is moving with respect to the stellar surface, definitively confirming that it originates in the accretion-shock region. The observed velocity suggests that the base of the accretion region is located at low latitudes of the stellar surface.
year | journal | country | edition | language |
---|---|---|---|---|
2015-01-01 |