6533b7d6fe1ef96bd1266fcf
RESEARCH PRODUCT
Growth of two-dimensional Au patches in graphene pores: A density-functional study
Pekka KoskinenSaku Antikainensubject
FabricationMaterials scienceGeneral Computer ScienceFOS: Physical sciencesGeneral Physics and AstronomyNanotechnology02 engineering and technology01 natural scienceslaw.inventiontwo-dimensional metalsgraphene poresgold nanostructureslawMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesGeneral Materials Science010306 general physicsCondensed Matter - Materials Scienceta114Condensed Matter - Mesoscale and Nanoscale PhysicsGrapheneMaterials Science (cond-mat.mtrl-sci)General Chemistry021001 nanoscience & nanotechnologyComputational MathematicsMechanics of MaterialsDensity functional theory0210 nano-technologydensity-functional modelingGraphene nanoribbonsdescription
Inspired by recent studies of various two-dimensional (2D) metals such as Au, Fe and Ag, we study the growth of two-dimensional gold patches in graphene pores by density-functional theory. We find that at room temperature gold atoms diffuse readily on top of both graphene and two-dimensional gold with energy barriers less than $0.5$ eV. Furthermore, gold atoms move without barriers from the top of graphene to its edge and from the top of 2D gold to its edge. The energy barriers are absent even at the interface of 2D gold and graphene, so that the gold atoms move effortlessly across the interface. We hope our demonstration for the propensity of diffusing gold atoms to grow 2D gold patches in graphene pores will inspire the fabrication of these patches experimentally.
year | journal | country | edition | language |
---|---|---|---|---|
2017-01-01 | Computational Materials Science |