6533b7d6fe1ef96bd12671e5
RESEARCH PRODUCT
Experimental Observation of a Large Low-Frequency Band Gap in a Polymer Waveguide
Marco MiniaciMarco MiniaciMatteo MazzottiMaciej RadzieńskiNesrine KherrazPawel KudelaWieslaw OstachowiczBruno MorvanFederico BosiaNicola M. PugnoNicola M. PugnoNicola M. Pugnosubject
scanning laser Doppler vibrometerAbsorption (acoustics)Materials scienceBand gapAcousticsMaterials Science (miscellaneous)Vibration control02 engineering and technologyLow frequencyLamb band gaplcsh:Technology01 natural sciencesNoise (electronics)finite element simulationsLamb wavesphononic crystals and metamaterials; Lamb band gap; guided waves; finite element simulations; scanning laser Doppler vibrometer0103 physical sciencesCenter frequency010306 general physicsComputingMilieux_MISCELLANEOUS[PHYS]Physics [physics]guided waveslcsh:TIsotropyFinite element simulations; Guided waves; Lamb band gap; Phononic crystals and metamaterials; Scanning laser Doppler vibrometerphononic crystals and metamaterials021001 nanoscience & nanotechnology0210 nano-technologydescription
The quest for large and low-frequency band gaps is one of the principal objectives pursued in a number of engineering applications, ranging from noise absorption to vibration control, and to seismic wave abatement. For this purpose, a plethora of complex architectures (including multiphase materials) and multiphysics approaches have been proposed in the past, often involving difficulties in their practical realization. To address the issue of proposing a material design that enables large band gaps using a simple configuration, in this study we propose an easy-to-manufacture design able to open large, low-frequency complete Lamb band gaps exploiting a suitable arrangement of masses and stiffnesses produced by cavities in a monolithic material. The performance of the designed structure is evaluated by numerical simulations and confirmed by scanning laser Doppler vibrometer (SLDV) measurements on an isotropic polyvinyl chloride plate in which a square ring region of cross-like cavities is fabricated. The full wave field reconstruction clearly confirms the ability of even a limited number of unit cell rows of the proposed design to efficiently attenuate Lamb waves. In addition, numerical simulations show that the structure allows to shift the central frequency of the BG through geometrical modifications. The design may be of interest for applications in which large BGs at low frequencies are required.
year | journal | country | edition | language |
---|---|---|---|---|
2018-02-01 |