6533b7d7fe1ef96bd1267c30

RESEARCH PRODUCT

Hydrokinetic simulations of nanoscopic precursor films in rough channels

D. I. DimitrovKurt BinderLuca BiferaleSergio ChibbaroAndrey MilchevF. DiotalleviSauro Succi

subject

Statistics and ProbabilityMesoscopic physicsMaterials scienceParametric analysisCapillary actionFluid Dynamics (physics.flu-dyn)FOS: Physical sciencesStatistical and Nonlinear PhysicsPhysics - Fluid DynamicsMechanicsCapillary fillingSquare (algebra)Settore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciPhysics::Fluid DynamicsMolecular dynamicsPoint (geometry)Statistics Probability and UncertaintyNanoscopic scale

description

We report on simulations of capillary filling of high-wetting fluids in nano-channels with and without obstacles. We use atomistic (molecular dynamics) and hydrokinetic (lattice-Boltzmann) approaches which point out clear evidence of the formation of thin precursor films, moving ahead of the main capillary front. The dynamics of the precursor films is found to obey a square-root law as the main capillary front, z^2(t) ~ t, although with a larger prefactor, which we find to take the same value for the different geometries (2D-3D) under inspection. The two methods show a quantitative agreement which indicates that the formation and propagation of thin precursors can be handled at a mesoscopic/hydrokinetic level. This can be considered as a validation of the Lattice-Boltzmann (LB) method and opens the possibility of using hydrokinetic methods to explore space-time scales and complex geometries of direct experimental relevance. Then, LB approach is used to study the fluid behaviour in a nano-channel when the precursor film encounters a square obstacle. A complete parametric analysis is performed which suggests that thin-film precursors may have an important influence on the efficiency of nanochannel-coating strategies.

https://dx.doi.org/10.48550/arxiv.0901.0677