6533b7d7fe1ef96bd1267f34

RESEARCH PRODUCT

A Multiconfigurational Theoretical Study of the Octamethyldimetalates of Cr(II), Mo(II), and Re(III): Revisiting the Correlation Between M-M Bond Length and the delta-delta* Transition Energy

Francesco FerranteLaura GagliardiBe BurstenAp Sattelberger

subject

MCSCF metal-metal bond spectroscopy

description

Four compounds containing metal-metal quadruple bonds, the [M 2(CH3)8]n- ions (M = Cr, Mo, W, Re and n = 4, 4, 4, 2, respectively), have been studied theoretically using multiconfigurational quantum-chemical methods. The molecular structure of the ground state of these compounds has been determined and the energy of the δ → δ* transition has been calculated and compared with previous experimental measurements. The high negative charges on the Cr, Mo, and W complexes lead to difficulties in the successful modeling of the ground-state structures, a problem that has been addressed by the explicit inclusion of four Li+ ions in these calculations. The ground-state geometries of the complexes and the δ → δ* transition have been modeled with either excellent agreement with experiment (Re) or satisfactory agreement (Cr, Mo, and W).

http://hdl.handle.net/10447/34462