6533b7d7fe1ef96bd126840c

RESEARCH PRODUCT

Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines

Giorgio MicaleDavide VaccariAndrea CipollinaMichele TedescoAlessandro TamburiniClaudio Scalici

subject

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciEngineeringBrineFiltration and Separation02 engineering and technologySTREAMS010501 environmental sciences01 natural sciencesBiochemistryReversed electrodialysisOsmotic powerSalinity gradient powerGeneral Materials SciencePower outputPhysical and Theoretical Chemistry0105 earth and related environmental sciencesBrackish waterFoulingbusiness.industryREAPowerBrackish waterEnvironmental engineering021001 nanoscience & nanotechnologyBrackish water; Brine; Natural solutions; REAPower; Salinity gradient power; Physical and Theoretical Chemistry; Materials Science (all); Biochemistry; Filtration and SeparationBrinePilot plantMaterials Science (all)0210 nano-technologybusinessNatural solution

description

Abstract This work reports experimental data collected for the first time on a full-scale RED pilot plant operated with natural streams in a real environment. The plant – located in the South of Italy – represents the final accomplishment of the REAPower project ( www.reapower.eu ). A RED unit equipped with almost 50 m2 of IEMs (125 cell pairs, 44x44 cm2) was tested, using both artificial and natural feed solutions, these latter corresponding to brackish water (≈0.03 M NaClequivalent) and saturated brine (4–5 M NaClequivalent). A power output up to around 40 W (i.e. 1.6 W/m2 of cell pair) was reached using natural solutions, while an increase of 60% was observed when testing the system with artificial NaCl solutions, reaching up to ≈65 W (2.7 W/m2 of cell pair). The unit performance was monitored over a period of five months under, and no significant performance losses were observed due to scaling, fouling or ageing phenomena. Such results are of paramount importance to assess the potential of the technology, towards the successful development on the industrial scale. A scale-up of the pilot plant is planned through the installation of two additional RED modules, with an expected power output in the order of 1 kW.

10.1016/j.memsci.2015.10.057http://hdl.handle.net/10447/170654