6533b7d7fe1ef96bd1268542

RESEARCH PRODUCT

High quality epitaxial Mn 2 Au (001) thin films grown by molecular beam epitaxy

Mathias KläuiT. BergfeldtMartin JourdanS. P. BommanaboyenaRené Heller

subject

010302 applied physicsDiffractionMaterials scienceCondensed matter physicsSpintronicsScatteringGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnologyEpitaxyRutherford backscattering spectrometry01 natural sciencesCondensed Matter::Materials ScienceElectron diffraction0103 physical sciencesThin film0210 nano-technologyMolecular beam epitaxy

description

The recently discovered phenomenon of Neel spin–orbit torque in antiferromagnetic Mn2Au [Bodnar et al., Nat. Commun. 9, 348 (2018); Meinert et al., Phys. Rev. Appl. 9, 064040 (2018); Bodnar et al., Phys. Rev. B 99, 140409(R) (2019)] has generated huge interest in this material for spintronics applications. In this paper, we report the preparation and characterization of high quality Mn2Au thin films by molecular beam epitaxy and compare them with magnetron sputtered samples. The films were characterized for their structural and morphological properties using reflective high-energy electron diffraction, x-ray diffraction, x-ray reflectometry, atomic force microscopy, and temperature dependent resistance measurements. The thin film composition was determined using both inductively coupled plasma optical emission spectroscopy and Rutherford backscattering spectrometry techniques. The MBE-grown films were found to show a superior smooth morphology and a low defect concentration, resulting in reduced scattering of the charge carriers.

10.1063/5.0009566http://dx.doi.org/10.1063/5.0009566