6533b7d7fe1ef96bd12685f7
RESEARCH PRODUCT
Early folding events during light harvesting complex II assembly in vitro monitored by pulsed electron paramagnetic resonance
Gunnar JeschkeNiklas FehrHarald PaulsenInés García-rubiosubject
ChlorophyllModels Molecular0301 basic medicineProtein FoldingPigment bindingLight-Harvesting Protein ComplexesBiophysicsBiochemistrylaw.invention03 medical and health scienceslawElectron paramagnetic resonancePlant ProteinsPulsed EPRChemistryElectron Spin Resonance SpectroscopyPeasPhotosystem II Protein ComplexCell BiologyProtein tertiary structureProtein Structure TertiaryChloroplastFolding (chemistry)KineticsCrystallography030104 developmental biologyEnergy TransferThylakoidProtein foldingApoproteinsProtein Bindingdescription
Efficient energy transfer in the major light harvesting complex II (LHCII) of green plants is facilitated by the precise alignment of pigments due to the protein matrix they are bound to. Much is known about the import of the LHCII apoprotein into the chloroplast via the TOC/TIC system and its targeting to the thylakoid membrane but information is sparse about when and where the pigments are bound and how this is coordinated with protein folding. In vitro, the LHCII apoprotein spontaneously folds and binds its pigments if the detergent-solubilized protein is combined with a mixture of chlorophylls a and b and carotenoids. In the present work, we employed this approach to study apoprotein folding and pigment binding in a time-resolved manner by using pulsed electron paramagnetic resonance (EPR). Intra-molecular distances were measured before folding, after 255 ms and 40 s folding time in the absence of cryoprotectant, and in the fully folded and assembled LHCII. In accordance with earlier results, the most of the folding of the three membrane-spanning alpha helices precedes their apposition into the final tertiary structure. However, their formation follows different kinetics, partially extending into the final phase of LHCII formation during which much of the condensation of the pigment-protein structure occurs, presumably governed by the binding of chlorophyll b. A rough timetable is proposed to sort partial events into the LHCII formation process.
year | journal | country | edition | language |
---|---|---|---|---|
2016-06-01 | Biochimica et Biophysica Acta (BBA) - Bioenergetics |