6533b7d7fe1ef96bd1268d99

RESEARCH PRODUCT

Analysis of directional effects on atmospheric correction

José A. SobrinoBelen FranchEric VermoteE. Fedele

subject

010504 meteorology & atmospheric sciences0211 other engineering and technologiesAtmospheric correctionSoil ScienceGeology02 engineering and technologyVegetation15. Life on landAlbedo01 natural sciencesNormalized Difference Vegetation IndexVNIRAERONET13. Climate actionEnvironmental scienceClimate modelBidirectional reflectance distribution functionComputers in Earth Sciences021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing

description

Abstract Atmospheric correction in the Visible and Near Infrared (VNIR) spectral range of remotely sensed data is significantly simplified if we assume a Lambertian target. However, natural surfaces are anisotropic. Therefore, this assumption will introduce an error in surface directional reflectance estimates and consequently in the estimation of vegetation indexes such as the Normalized Difference Vegetation Index (NDVI) and the surface albedo retrieval. In this paper we evaluate the influence of directional effects on the atmospheric correction and its impact in the NDVI and albedo estimation. First, we derived the NDVI and surface albedo from data corrected assuming a Lambertian surface, then by using the BRDF model parameters used in the albedo retrieval, we account for the coupling effect and retrieved an improved NDVI and albedo. The study used Climate Modeling Grid (CMG) MODIS data, which has a spatial resolution of 0.05°. We focused our analysis on four Aeronet sites located in the United States of America: KONZA EDC (a prairie region in the Flint Hills, Kansas), Howland (a forest area in Maine), Walker Branch (a forest area in Tennessee) and GSFC (at NASA's Goddard Space Flight Center). The results indicate that the relative errors due to the Lambertian assumption on the surface reflectance are 3–12% in the visible and 0.7–5.0% in the near-infrared, around 1% on the NDVI and less than 1% on the albedo.

https://doi.org/10.1016/j.rse.2012.10.018