6533b7d8fe1ef96bd12697ad

RESEARCH PRODUCT

A natural and rigid model of quantum groups

Philippe BonneauMoshé FlatoGeorges Pinczon

subject

Discrete mathematicsFormalism (philosophy of mathematics)Pure mathematicsRigid modelQuantum groupMathematics::Quantum AlgebraMathematics::Rings and AlgebrasStatistical and Nonlinear PhysicsHopf algebraNoncommutative geometryQuantumMathematical PhysicsMathematics

description

We introduce a natural (Frechet-Hopf) algebra A containing all generic Jimbo algebras U t (sl(2)) (as dense subalgebras). The Hopf structures on A extend (in a continuous way) the Hopf structures of generic U t (sl(2)). The Universal R-matrices converge in A\(\hat \otimes \)A. Using the (topological) dual of A, we recover the formalism of functions of noncommutative arguments. In addition, we show that all these Hopf structures on A are isomorphic (as bialgebras), and rigid in the category of bialgebras.

https://doi.org/10.1007/bf00402377