6533b7d8fe1ef96bd12697e8

RESEARCH PRODUCT

An approximation to maximum likelihood estimates in reduced models

David CoxNanny Wermuth

subject

Statistics and ProbabilityRestricted maximum likelihoodApplied MathematicsGeneral MathematicsMaximum likelihoodMultivariate normal distributionMaximum likelihood sequence estimationCovarianceAgricultural and Biological Sciences (miscellaneous)Extended modelStatisticsExpectation–maximization algorithmLog-linear modelStatistics Probability and UncertaintyGeneral Agricultural and Biological SciencesMathematics

description

SUMMARY An approximation to the maximum likelihood estimates of the parameters in a model can be obtained from the corresponding estimates and information matrices in an extended model, i.e. a model with additional parameters. The approximation is close provided that the data are consistent with the first model. Applications are described to log linear models for discrete data, to models for multivariate normal distributions with special covariance matrices and to mixed discrete-continuous models.

https://doi.org/10.1093/biomet/77.4.747