6533b7d8fe1ef96bd126987a

RESEARCH PRODUCT

Fast Distributed Subspace Projection via Graph Filters

Thilina N. WeerasingheDaniel RomeroCesar Asensio-marcoBaltasar Beferull-lozano

subject

Filter designComputer scienceRobustness (computer science)Noise reduction0202 electrical engineering electronic engineering information engineeringGraph (abstract data type)020206 networking & telecommunications02 engineering and technologyShift matrixAlgorithmSubspace topology

description

A significant number of linear inference problems in wireless sensor networks can be solved by projecting the observed signal onto a given subspace. Decentralized approaches avoid the need for performing such an operation at a central processor, thereby reducing congestion and increasing the robustness and the scalability of the network. Unfortunately, existing decentralized approaches either confine themselves to a reduced family of subspace projection tasks or need an infinite number of iterations to obtain the exact projection. To remedy these limitations, this paper develops a framework for computing a wide class of subspace projections in a decentralized fashion by relying on the notion of graph filtering. To this end, a methodology to obtain the shift matrix and the corresponding filter coefficients that provide exact subspace projection in a nearly minimal number of iterations is proposed. Numerical experiments corroborate the merits of the proposed approach. Fast Distributed Subspace Projection via Graph Filters Nivå1

10.1109/icassp.2018.8462110http://hdl.handle.net/11250/2595138