6533b7d8fe1ef96bd12698b5
RESEARCH PRODUCT
Urysohn's metrization theorem for higher cardinals
Joonas Ilmavirtasubject
Mathematics::Logic54F65 54C25 54A25 54D70 54D10 54D20General Topology (math.GN)FOS: MathematicsMathematics::General TopologyAstrophysics::Cosmology and Extragalactic AstrophysicsMathematics - General Topologydescription
In this paper a generalization of Urysohn's metrization theorem is given for higher cardinals. Namely, it is shown that a topological space with a basis of cardinality at most $|\omega_\mu|$ or smaller is $\omega_\mu$-metrizable if and only if it is $\omega_\mu$-additive and regular, or, equivalently, $\omega_\mu$-additive, zero-dimensional, and T\textsubscript{0}. Furthermore, all such spaces are shown to be embeddable in a suitable generalization of Hilbert's cube.
year | journal | country | edition | language |
---|---|---|---|---|
2011-05-23 |