6533b7d8fe1ef96bd1269bac

RESEARCH PRODUCT

A dynamic model for hysteresis in magnetostrictive devices

Alessia ViolaVincenzo FranzittaMarco Trapanese

subject

Preisach distribution functionRelation (database)Artificial neural networkComputer scienceExperimental techniqueGeneral Physics and AstronomyMagnetostrictionMagnetic hysteresisHysteresisDistribution functionTerfenol-DPreisach theoryControl theoryDynamic ExtensionHysteresiMagnetostrictive devices Dynamic extensionTerfenol-D

description

In this paper, a dynamic model for the description and design of hysteresis in magnetostrictive devices is presented. The model is based on Preisach theory and its dynamic extension. A procedure for determining the Preisach distribution function is given. This procedure is based on neural networks. The model is able to reconstruct both the magnetization relation and the field-strain relation. The model is validated through comparison and prediction of data collected from a typical Terfenol-D sample and a novel experimental technique dedicated to the validation of dynamic models is proposed.

https://doi.org/10.1063/1.4868708