6533b7d8fe1ef96bd126a507
RESEARCH PRODUCT
Multiple solutions with sign information for semilinear Neumann problems with convection
Francesca VetroCalogero VetroNikolaos S. Papageorgiousubject
ConvectionTruncationGeneral Mathematics010102 general mathematicsMathematical analysisMultiplicity (mathematics)Type (model theory)Convection01 natural sciencesIndefinite drift coefficientExtremal constant sign solution010101 applied mathematicsMonotone polygonFlow (mathematics)Settore MAT/05 - Analisi MatematicaConstant sign and nodal solutionNeumann boundary conditionFlow invariance0101 mathematicsSign (mathematics)Mathematicsdescription
We consider a semilinear Neumann problem with convection. We assume that the drift coefficient is indefinite. Using the theory of nonlinear operators of monotone type, together with truncation and comparison techniques and flow invariance arguments, we prove a multiplicity theorem producing three nontrivial smooth solutions (positive, negative and nodal).
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2019-07-01 | Revista Matemática Complutense |