6533b7d8fe1ef96bd126ac2d

RESEARCH PRODUCT

Jahn-Teller effect in molecular electronics: quantum cellular automata

Eugenio CoronadoBoris TsukerblatAndrew PaliiJuan M. Clemente-juan

subject

History010304 chemical physicsJahn–Teller effectMolecular electronicsQuantum dot cellular automatonCharge (physics)010402 general chemistry01 natural sciences0104 chemical sciencesComputer Science ApplicationsEducationBinary informationQuantum mechanics0103 physical sciencesElectronic engineeringQuantumQuantum computerMathematicsQuantum cellular automaton

description

The article summarizes the main results of application of the theory of the Jahn-Teller (JT) and pseudo JT effects to the description of molecular quantum dot cellular automata (QCA), a new paradigm of quantum computing. The following issues are discussed: 1) QCA as a new paradigm of quantum computing, principles and advantages; 2) molecular implementation of QCA; 3) role of the JT effect in charge trapping, encoding of binary information in the quantum cell and non-linear cell-cell response; 4) spin-switching in molecular QCA based on mixed-valence cell; 5) intervalence optical absorption in tetrameric molecular mixed-valence cell through the symmetry assisted approach to the multimode/multilevel JT and pseudo JT problems.

https://doi.org/10.1088/1742-6596/833/1/012002