6533b7d9fe1ef96bd126c10d
RESEARCH PRODUCT
Investigation of ZrO[sub 2]–Gd[sub 2]O[sub 3] Based High-k Materials as Capacitor Dielectrics
Aile TammTimo SajavaaraMikko RitalaMarkku LeskeläIndrek JõgiMarianna KemellKaupo KukliKaupo KukliJun Lusubject
010302 applied physicsPermittivityMaterials scienceRenewable Energy Sustainability and the EnvironmentAnalytical chemistryEquivalent oxide thickness02 engineering and technologyDielectric021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAtomic layer depositionElectric field0103 physical sciencesMaterials ChemistryElectrochemistry0210 nano-technologyCurrent densityLeakage (electronics)High-κ dielectricdescription
Atomic layer deposition (ALD) of ZrO 2 ―Gd 2 O 3 nanolaminates and mixtures was investigated for the preparation of a high permittivity dielectric material. Variation in the relative number of ALD cycles for constituent oxides allowed one to obtain films with controlled composition. Pure ZrO 2 films possessed monoclinic and higher permittivity cubic or tetragonal phases, whereas the inclusion of Gd 2 O 3 resulted in the disappearance of the monoclinic phase. Changes in phase composition were accompanied with increased permittivity of mixtures and laminates with low Gd content. Further increase in the lower permittivity Gd 2 O 3 content above 3.4 cat. % resulted in the decreased permittivity of the mixtures. Leakage currents generally decreased with increasing Gd content, whereby laminated structures demonstrated smaller leakage currents than mixed films at a comparable Gd content. Concerning the bottom electrode materials, the best results in terms of permittivity and leakage currents were achieved with Ru, allowing a capacitance equivalent oxide thickness of ∼ 1 nm and a current density of 3 × 10 ―8 A/cm 2 at 1 V. Charge storage values up to 60 nC/mm 2 were obtained for mixtures and laminates with thickness below 30 nm. In general, at electric fields below 2-3 MV/cm, normal and trap-compensated Poole-Frenkel conduction mechanisms were competing, whereas at higher fields, Fowler-Nordheim and/or trap-assisted tunneling started to dominate.
year | journal | country | edition | language |
---|---|---|---|---|
2010-01-01 | Journal of The Electrochemical Society |