6533b7d9fe1ef96bd126c2e5

RESEARCH PRODUCT

One-Cell Doubling Evaluation by Living Arrays of Yeast, ODELAY!

David J. DilworthAlexander V. RatushnyAlexander V. RatushnySong LiThurston HerricksJennifer J. SmithJohn D. AitchisonJohn D. AitchisonFred D. MastFred D. Mast

subject

0301 basic medicineSystems biologySaccharomyces cerevisiaeCellBioengineeringSaccharomyces cerevisiaeInvestigationsBiologyyeastQH426-470lag time03 medical and health sciencesGenetic HeterogeneityLag timeSingle-cell analysismedicinePopulation Heterogeneitycarrying capacityGeneticsDoubling timeMolecular BiologyThroughput (business)Genetics (clinical)030304 developmental biologyCell Proliferation0303 health sciencesGenomeEcology030306 microbiologyCell growthSystems BiologyCell CycleHuman Genomebiology.organism_classificationYeast030104 developmental biologymedicine.anatomical_structurePhenotypeFungalGene-Environment Interactiongrowth ratefitness assessmentGeneric health relevanceGenome FungalSingle-Cell AnalysisBiological system

description

Abstract Cell growth is a complex phenotype widely used in systems biology to gauge the impact of genetic and environmental perturbations. Due to the magnitude of genome-wide studies, resolution is often sacrificed in favor of throughput, creating a demand for scalable, time-resolved, quantitative methods of growth assessment. We present ODELAY (One-cell Doubling Evaluation by Living Arrays of Yeast), an automated and scalable growth analysis platform. High measurement density and single-cell resolution provide a powerful tool for large-scale multiparameter growth analysis based on the modeling of microcolony expansion on solid media. Pioneered in yeast but applicable to other colony forming organisms, ODELAY extracts the three key growth parameters (lag time, doubling time, and carrying capacity) that define microcolony expansion from single cells, simultaneously permitting the assessment of population heterogeneity. The utility of ODELAY is illustrated using yeast mutants, revealing a spectrum of phenotypes arising from single and combinatorial growth parameter perturbations.

10.1534/g3.116.037044http://g3journal.org/lookup/doi/10.1534/g3.116.037044