6533b7d9fe1ef96bd126c324

RESEARCH PRODUCT

Glutathione deficiency of the Arabidopsis mutant pad2-1 affects oxidative stress-related events, defense gene expression and hypersensitive response

Lorelise BranciardDavid WendehenneFelix MauchCarole Dubreuil-mauriziBenoît PoinssotAndreas J. MeyerLaurent MartyPatrick FrettingerJan Víteček

subject

0106 biological sciencesPhysiologyMutantGlutathione reductaseArabidopsisOligosaccharidesPlant Science01 natural scienceschemistry.chemical_compoundAnti-Infective AgentsGene Expression Regulation PlantCamalexinArabidopsis thaliana0303 health sciencesGlutathioneBiochemistryHost-Pathogen InteractionsDisease SusceptibilitySalicylic AcidOxidation-ReductionSignal TransductionHypersensitive responsePhytophthoradisease resistanceBiologyNitric Oxiderespiratory burst oxidase homolog d[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciencesStress PhysiologicalGeneticsPlants Interacting with Other Organismsglutathione reductase030304 developmental biologyPlant DiseasesArabidopsis ProteinsCell MembraneWild typeGlutathioneHydrogen Peroxidebiology.organism_classificationMolecular biologyPlant LeavesOxidative StresschemistryMutationglutathione-s-transferaseIsochorismate synthasebiology.proteinglutamate-cysteine ligaseReactive Oxygen Species010606 plant biology & botany

description

L'article original est publié par The American Society of Plant Biologists; International audience; The Arabidopsis (Arabidopsis thaliana) phytoalexin-deficient mutant pad2-1 displays enhanced susceptibility to a broad range of pathogens and herbivorous insects that correlates with deficiencies in the production of camalexin, indole glucosinolates, and salicylic acid (SA). The pad2-1 mutation is localized in the GLUTAMATE-CYSTEINE LIGASE (GCL) gene encoding the first enzyme of glutathione biosynthesis. While pad2-1 glutathione deficiency is not caused by a decrease in GCL transcripts, analysis of GCL protein level revealed that pad2-1 plants contained only 48% of the wild-type protein amount. In contrast to the wild type, the oxidized form of GCL was dominant in pad2-1, suggesting a distinct redox environment. This finding was corroborated by the expression of GRX1-roGFP2, showing that the cytosolic glutathione redox potential was significantly less negative in pad2-1. Analysis of oxidative stress-related gene expression showed a higher transcript accumulation in pad2-1 of GLUTATHIONE REDUCTASE, GLUTATHIONE-S-TRANSFERASE, and RESPIRATORY BURST OXIDASE HOMOLOG D in response to the oomycete Phytophthora brassicae. Interestingly, oligogalacturonide elicitation in pad2-1 revealed a lower plasma membrane depolarization that was found to act upstream of an impaired hydrogen peroxide production. This impaired hydrogen peroxide production was also observed during pathogen infection and correlated with a reduced hypersensitive response in pad2-1. In addition, a lack of pathogen-triggered expression of the ISOCHORISMATE SYNTHASE1 gene, coding for the SA-biosynthetic enzyme isochorismate synthase, was identified as the cause of the SA deficiency in pad2-1. Together, our results indicate that the pad2-1 mutation is related to a decrease in GCL protein and that the resulting glutathione deficiency negatively affects important processes of disease resistance.

10.1104/pp.111.182667https://hal.inrae.fr/hal-02652368