6533b7d9fe1ef96bd126c3b4

RESEARCH PRODUCT

Degradation of Plasticised Poly(lactide) Composites with Nanofibrillated Cellulose in Different Hydrothermal Environments

M. H. WolfO. Gil-castellJ. CeaJ. C. CarrascoA. Ribes-greus

subject

Environmental EngineeringPolymers and PlasticsMaterials compostosMaterials Chemistry

description

AbstractIn this study, bionanocomposite films based on poly(lactide) (PLA) plasticised with poly(ethylene glycol) (PEG) (7.5 wt%) and reinforced with various contents of nanofibrillated cellulose (NFC) (1, 3, 5 wt%) were prepared. The hydrothermal degradation was investigated through immersion in several aqueous environments at temperatures of 8, 23, 58, and 70 °C as a function of time (7, 15, 30, 60, 90 days). The effect of water immersion on the physicochemical properties of the materials was assessed by monitoring the changes in the morphology, thermo-oxidative stability, thermal properties, and molar mass through field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC). The hydrothermal degradation behaviour was not critically affected regardless of the nanofibrillated cellulose content. All the materials revealed certain integrity towards water immersion and hydrolysis effects at low temperatures (8 and 23 °C). The low hydrothermal degradation may be an advantage for using these PLA biocomposites in contact with water at ambient temperatures and limited exposure times. On the other hand, immersion in water at higher temperatures above the glass transition (58 and 70 °C), leads to a drastic deterioration of the properties of these PLA-based materials, in particular to the reduction of the molar mass and the disintegration into small pieces. This hydrothermal degradation behaviour can be considered a feasible option for the waste management of PLA/PEG/NFC bionanocomposites by deposition in hot aqueous environments.

10.1007/s10924-022-02711-yhttps://hdl.handle.net/10550/85443