6533b7d9fe1ef96bd126cf30
RESEARCH PRODUCT
Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization
Mathias KläuiMehmet C. OnbasliCaroline A. RossBurkard HillebrandsAndreas KehlbergerAndrii V. ChumakGerhard JakobDong-hun Kimsubject
Materials scienceCondensed matter physicslcsh:BiotechnologyGeneral EngineeringYttrium iron garnetGadolinium gallium garnetchemistry.chemical_elementYttriumCoercivitylcsh:QC1-999Pulsed laser depositionchemistry.chemical_compoundMagnetic anisotropyNuclear magnetic resonancechemistrylcsh:TP248.13-248.65General Materials ScienceThin filmSaturation (magnetic)lcsh:Physicsdescription
Yttrium iron garnet (YIG, Y [subscript 3]Fe[subscript 5]O[subscript 12]) films have been epitaxially grown on Gadolinium Gallium Garnet (GGG, Gd[subscript 3]Ga[subscript 5]O[subscript 12]) substrates with (100) orientation using pulsed laser deposition. The films were single-phase, epitaxial with the GGG substrate, and the root-mean-square surface roughness varied between 0.14 nm and 0.2 nm. Films with thicknesses ranging from 17 to 200 nm exhibited low coercivity (<2 Oe), near-bulk room temperature saturation moments (∼135 emu cm[superscript −3]), in-plane easy axis, and damping parameters as low as 2.2 × 10[superscript −4]. These high quality YIG thin films are useful in the investigation of the origins of novel magnetic phenomena and magnetization dynamics.
year | journal | country | edition | language |
---|---|---|---|---|
2014-10-01 | APL Materials |