6533b7d9fe1ef96bd126d670

RESEARCH PRODUCT

Resistance simulations for junctions of SW and MW carbon nanotubes with various metal substrates

Yuri F. ZhukovskiiYuri ShuninStefano BellucciNatalia Burlutskaya

subject

Liquid metalMaterials scienceelectronic structure calculationsQC1-999General Physics and AstronomyNanotechnology02 engineering and technologyCarbon nanotubeConductivity01 natural sciencesMolecular physicslaw.inventionMetallaw0103 physical sciencesCluster (physics)010306 general physicsscattering theorycarbon nanotubesjunction between the cnt and metal substrateresistance of cnt-me contactPhysicsinter-wall transparency in mw cntsConductance021001 nanoscience & nanotechnologysw and mw morphologyvisual_artvisual_art.visual_art_mediumScattering theory0210 nano-technologyChirality (chemistry)

description

Abstract This theoretical study focuses on junctions between the carbon nanotubes (CNTs) and contacting metallic elements of a nanocircuit. Numerical simulations on the conductance and resistance of these contacts have been performed using the multiple scattering theory and the effective media cluster approach. Two models for CNT-metal contacts have been considered in this paper: a) first principles “liquid metal” model and b) semi-empirical model of “effective bonds” based on Landauer notions on ballistic conductivity. Within the latter, which is a more adequate description of chirality effects, we have simulated both single-wall (SW) and multi-wall (MW) CNTs with different morphology. Results of calculations on resistance for different CNT-Me contacts look quantitatively realistic (from several to hundreds kOhm, depending on chirality, diameter and thickness of MW CNT). The inter-wall transparency coefficient for MW CNT has been also simulated, as an indicator of possible ‘radial current’ losses.

10.2478/s11534-010-0086-9http://dx.doi.org/10.2478/s11534-010-0086-9