6533b7dafe1ef96bd126d878

RESEARCH PRODUCT

Non-Gaussian correlations imprinted by local dephasing in fermionic wires

Jamir MarinoJamir MarinoPavel E. DolgirevDries SelsDries SelsEugene Demler

subject

Hamiltonian mechanicsPhysicsPhysicsDephasingFOS: Physical sciences02 engineering and technologyDissipation021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter - Other Condensed Mattersymbols.namesakeCorrelation functionQuantum Gases (cond-mat.quant-gas)Quantum mechanics0103 physical sciencessymbolsDissipative systemCondensed Matter - Quantum Gases010306 general physics0210 nano-technologyQuantumQuantum fluctuationOther Condensed Matter (cond-mat.other)Quantum Zeno effect

description

We study the behavior of an extended fermionic wire coupled to a local stochastic field. Since the quantum jump operator is Hermitian and quadratic in fermionic operators, it renders the model soluble, allowing investigation of the properties of the non-equilibrium steady-state and the role of dissipation-induced fluctuations. We derive a closed set of equations of motion solely for the two-point correlator; on the other hand, we find, surprisingly, that the many-body state exhibits non-Gaussian correlations. Density-density correlation function demonstrates a crossover from a regime of weak dissipation characterized by moderate heating and stimulated fluctuations to a quantum Zeno regime ruled by strong dissipation, which tames quantum fluctuations. Instances of soluble dissipative impurities represent an experimentally viable platform to understand the interplay between dissipation and Hamiltonian dynamics in many-body quantum systems.

https://doi.org/10.1103/physrevb.102.100301