6533b7dafe1ef96bd126e1c9
RESEARCH PRODUCT
Chlorophyll b is involved in long-wavelength spectral properties of light-harvesting complexes LHC I and LHC II.
Peter ThoméHarald PaulsenWolfgang RühleVolkmar H.r. SchmidWerner KühlbrandtHans Roglsubject
Chlorophyll bChlorophyllPhotosystem IIPigment bindingPhotosynthetic Reaction Center Complex ProteinsBiophysicsLight-Harvesting Protein ComplexesPhotosystem IPhotochemistryBiochemistryAbsorptionLight-harvesting complexReconstitutionchemistry.chemical_compoundSolanum lycopersicumStructural BiologySpinacia oleraceaGeneticsChlorophyll bindingCentrifugation Density GradientMolecular BiologyChlorophyll fluorescenceLong-wavelength chlorophyllBinding SitesPhotosystem I Protein ComplexChemistryChlorophyll ATemperaturePhotosystem II Protein ComplexLight-harvesting complexes of green plantsCell BiologyPigments BiologicalPlant LeavesSpectrometry FluorescenceLight-harvesting complexChlorophyll fluorescenceChlorophyll bindingProtein Bindingdescription
AbstractChlorophyll (Chl) molecules attached to plant light-harvesting complexes (LHC) differ in their spectral behavior. While most Chl a and Chl b molecules give rise to absorption bands between 645 nm and 670 nm, some special Chls absorb at wavelengths longer than 700 nm. Among the Chl a/b-antennae of higher plants these are found exclusively in LHC I. In order to assign this special spectral property to one chlorophyll species we reconstituted LHC of both photosystem I (Lhca4) and photosystem II (Lhcb1) with carotenoids and only Chl a or Chl b and analyzed the effect on pigment binding, absorption and fluorescence properties. In both LHCs the Chl-binding sites of the omitted Chl species were occupied by the other species resulting in a constant total number of Chls in these complexes. 77-K spectroscopic measurements demonstrated that omission of Chl b in refolded Lhca4 resulted in a loss of long-wavelength absorption and 730-nm fluorescence emission. In Lhcb1 with only Chl b long-wavelength emission was preserved. These results clearly demonstrate the involvement of Chl b in establishing long-wavelength properties.
year | journal | country | edition | language |
---|---|---|---|---|
2001-06-14 | FEBS letters |