6533b7dafe1ef96bd126eb26

RESEARCH PRODUCT

Bovine Serum Albumin protofibril-like aggregates formation: Solo but not simple mechanism

Andrea PonzoniVito FoderàGiorgio SberveglieriValeria MilitelloValeria MilitelloMaurizio LeoneMaurizio LeoneValeria VetriMichele D'amico

subject

Circular dichroismProtein ConformationGlobular proteinStatic ElectricityBiophysicsProtein aggregationBiochemistryprotein aggregation amyloid fibril fluorescence conformational changeschemistry.chemical_compoundProtein structureAnimalsBenzothiazolesBovine serum albuminMolecular Biologychemistry.chemical_classificationbiologyTemperatureTryptophanSerum Albumin BovineHydrogen-Ion ConcentrationSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)KineticsThiazolesCrystallographyIsoelectric pointchemistryProtein destabilizationbiology.proteinThermodynamicsCattleThioflavinProtein Multimerization

description

We report an experimental study on the model protein Bovine Serum Albumin (BSA), with the aim of elucidating the mechanisms by which a fully folded globular protein undergoes different aggregation pathways leading to the formation of amyloid fibrils or amorphous aggregates. We observe thermally induced formation of fibrillar structures at pH far from the protein isoelectric point. The increase of electrostatic repulsion results in protein destabilization and in modifications of inter and intra-molecular interactions leading to the growth of fibril-like aggregates stabilized by inter-molecular-β sheets. The aggregation kinetics is studied by means of fluorescence techniques, light scattering, Circular Dichroism (CD), infrared spectroscopy (FTIR) and Atomic Force Microscopy (AFM). Changes in protein secondary structures turn out to be the driving mechanism of the observed aggregation and they progress in parallel with the growth of Thioflavin T emission intensity and scattering signal. This concurrent behavior suggests a mutual stabilization of elongated protofibril-like structures and of protein conformational and structural changes, which lead to a more rigid and ordered structures. Our results give new insights on BSA self-assembly process in alkaline conditions clearly providing new pieces of evidences of the interplay of several and interconnected mechanisms occurring on different time and length scales.

10.1016/j.abb.2011.01.024http://hdl.handle.net/11379/157809