6533b7dafe1ef96bd126ec11

RESEARCH PRODUCT

Mesoglea Extracellular Matrix Reorganization during Regenerative Process in Anemonia viridis (Forskål, 1775)

Daniela ParrinelloNicolò BaranziniMatteo CammarataAnnalisa GrimaldiClaudia La CorteMaria Giovanna ParisiMariano Dara

subject

0301 basic medicinecollagenAnemonia viridis Collagen Enzymatic activity Histology Morphology Regeneration Animals Collagen Type I Extracellular Matrix Sea Anemones Regeneration Wound HealingTentacleQH301-705.5enzymatic activityContext (language use)Anemonia viridisMesogleaArticleCollagen Type ICatalysisInorganic ChemistryExtracellular matrixhistology03 medical and health sciences0302 clinical medicinemorphologyAnimalsPhysical and Theoretical ChemistryBiology (General)Molecular BiologyQD1-999SpectroscopyWound HealingbiologyRegeneration (biology)Organic ChemistryGeneral MedicineRegenerative processExtracellular MatrixComputer Science ApplicationsCell biologyFibronectinChemistrySea Anemones030104 developmental biologyregenerationbiology.proteinAnemonia viridis; collagen; enzymatic activity; histology; morphology; regenerationWound healing<i>Anemonia viridis</i>030217 neurology & neurosurgery

description

Given the anatomical simplicity and the extraordinary ability to regenerate missing parts of the body, Cnidaria represent an excellent model for the study of the mechanisms regulating regenerative processes. They possess the mesoglea, an amorphous and practically acellular extracellular matrix (ECM) located between the epidermis and the gastrodermis of the body and tentacles and consists of the same molecules present in the ECM of vertebrates, such as collagen, laminin, fibronectin and proteoglycans. This feature makes cnidarians anthozoans valid models for understanding the ECM role during regenerative processes. Indeed, it is now clear that its role in animal tissues is not just tissue support, but instead plays a key role during wound healing and tissue regeneration. This study aims to explore regenerative events after tentacle amputation in the Mediterranean anemone Anemonia viridis, focusing in detail on the reorganization of the ECM mesoglea. In this context, both enzymatic, biometric and histological experiments reveal how this gelatinous connective layer plays a fundamental role in the correct restoration of the original structures by modifying its consistency and stiffness. Indeed, through the deposition of collagen I, it might act as a scaffold and as a guide for the reconstruction of missing tissues and parts, such as amputated tentacles.

10.3390/ijms22115971http://dx.doi.org/10.3390/ijms22115971