6533b7dafe1ef96bd126ec13
RESEARCH PRODUCT
All-inclusive interacting dark sector cosmologies
Rafael C. NunesWeiqiang YangOlga MenaEleonora Di ValentinoSupriya Pansubject
PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsPhysics beyond the Standard ModelDark matterFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsLambda01 natural sciencesGeneral Relativity and Quantum CosmologyCosmologyHigh Energy Physics - Phenomenologysymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)Dark radiation0103 physical sciencesDark energysymbolsHigh Energy Physics::ExperimentPlanckNeutrino010306 general physicsAstrophysics - Cosmology and Nongalactic Astrophysicsdescription
In this paper we explore possible extensions of Interacting Dark Energy cosmologies, where Dark Energy and Dark Matter interact non-gravitationally with one another. In particular, we focus on the neutrino sector, analyzing the effect of both neutrino masses and the effective number of neutrino species. We consider the Planck 2018 legacy release data combined with several other cosmological probes, finding no evidence for new physics in the dark radiation sector. The current neutrino constraints from cosmology should be therefore regarded as robust, as they are not strongly dependent on the dark sector physics, once all the available observations are combined. Namely, we find a total neutrino mass $M_\nu<0.15$ eV and a number of effective relativistic degrees of freedom of $N_{\rm eff}=3.03^{+0.33}_{-0.33}$, both at 95\% CL, which are close to those obtained within the $\Lambda$CDM cosmology, $M_\nu<0.12$ eV and $N_{\rm eff}=3.00^{+0.36}_{-0.35}$ for the same data combination.
year | journal | country | edition | language |
---|---|---|---|---|
2020-01-29 |