6533b7dafe1ef96bd126ecd8

RESEARCH PRODUCT

Activating remote entanglement in a quantum network by local counting of identical particles

Rosario Lo FrancoBruno BellomoGiuseppe CompagnoAlessia Castellini

subject

Quantum protocolsPhysicsQuantum networkQuantum PhysicsProcess (computing)FOS: Physical sciencesQuantum entanglementFermion01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasQuantum entanglement[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]0103 physical sciencesQuantum information processingKey (cryptography)Identical particleStatistical physicsQuantum information010306 general physicsQuantum Physics (quant-ph)QuantumIdentical particles

description

Quantum information and communication processing within quantum networks usually employs identical particles. Despite this, the physical role of quantum statistical nature of particles in large-scale networks remains elusive. Here, we show that just the indistinguishability of fermions makes it possible a new mechanism of entanglement transfer in many-node quantum networks. This process activates remote entanglement among distant sites, which do not share a common past, by only locally counting identical particles and classical communication. These results constitute the key achievement of the present technique and open the way to a more stable multistage transfer of nonlocal quantum correlations based on fermions.

10.1103/physreva.99.062322https://hal.archives-ouvertes.fr/hal-02418365/document