6533b7dafe1ef96bd126f59c
RESEARCH PRODUCT
Ultrafast decay of the excited singlet states of thioxanthone by internal conversion and intersystem crossing.
Patrice JacquesLuis Serrano-andrésGonzalo AnguloEric VautheyJakob GriljOscar Rubio-ponssubject
Conical intersectionsChemistryTransition statesQuantum yieldInternal conversion (chemistry)Atomic and Molecular Physics and OpticsPhotophysicsIntersystem crossingExcited stateddc:540Solvent effectsUltrafast laser spectroscopySinglet fissionAb initio calculationsSinglet statePhysical and Theoretical ChemistryAtomic physicsTriplet statedescription
The experimental ultrafast photophysics of thioxanthone in several aprotic organic solvents at room temperature is presented, measured using femtosecond transient absorption together with high-level ab initio CASPT2 calculations of the singlet- and triplet-state manifolds in the gas phase, including computed state minima and conical intersections, transition energies, oscillator strengths, and spin-orbit coupling terms. The initially populated singlet pi pi* state is shown to decay through internal conversion and intersystem crossing processes via intermediate n pi* singlet and triplet states, respectively. Two easily accessible conical intersections explain the favorable internal conversion rates and low fluorescence quantum yields in nonpolar media. The presence of a singlet-triplet crossing near the singlet pi pi* minimum and the large spin-orbit coupling terms also rationalize the high intersystem crossing rates. A phenomenological kinetic scheme is proposed that accounts for the decrease in internal conversion and intersystem crossing (i.e. the very large experimental crescendo of the fluorescence quantum yield) with the increase of solvent polarity.
year | journal | country | edition | language |
---|---|---|---|---|
2010-01-14 | Chemphyschem : a European journal of chemical physics and physical chemistry |